# Constraining $\Delta G$ with Double Helicity Asymmetry Measurements at PHENIX

Andrew Manion
Stony Brook University
for the PHENIX Collaboration

DIS 2010

### **Outline**

- ΔG
- Polarized protons at RHIC
- The PHENIX detector
- Double Longitudinal Spin Asymmetries
  - Charged Pion
  - Direct Photon
  - Neutral Pion
- Global Fits, extracting ΔG
- Conclusion





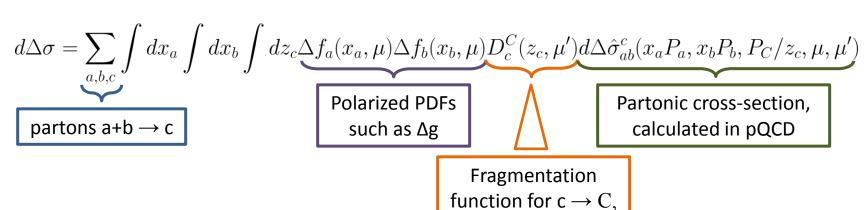
### ΔG

 Motivation: Better understand the proton spin, specifically the gluon contribution:

$$S_p = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Where  $\Delta G$ , the gluon contribution to the proton spin, is given in terms of Polarized Parton Distribution Functions (polarized PDFs)

$$\Delta G = \int_0^1 dx \Delta g = \int_0^1 dx [g_+(x, \mu^2) - g_-(x, \mu^2)]$$



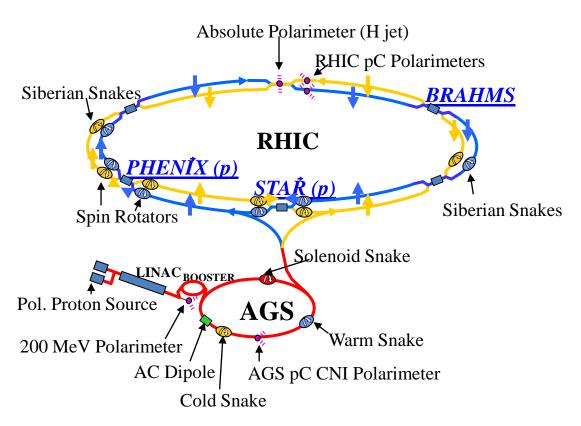



### Polarized Protons @ RHIC

 Polarized PDFs show up in differences of helicity dependent cross sections, e.g. in

$$\vec{p} + \vec{p} \rightarrow C + X$$
:




measured in e<sup>+</sup>e<sup>-</sup>

 Studying these requires a collider with polarized beam (i.e. RHIC)





### **RHIC**



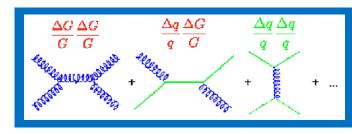
Within 424 ns, all four possible bunch patterns:
 Reduces systematic uncertainty



- Siberian snakes rotate spin orientation so that on average, depolarizing perturbations cancel on subsequent passes (and polarization is retained)
- Spin Rotators allow polarization to be changed from vert. to long. in interaction region






### Double Longitudinal Spin Asymmetries

 We can study differences in cross sections through "double longitudinal spin asymmetries" or A<sub>LL</sub>s:

$$A_{LL} \equiv \frac{\{d\sigma_{++} + d\sigma_{--}\} - \{d\sigma_{+-} + d\sigma_{-+}\}}{\{d\sigma_{++} + d\sigma_{--}\} + \{d\sigma_{+-} + d\sigma_{-+}\}} = \frac{d\Delta\sigma}{d\sigma}$$
 like helicity collisions un-like helicity collisions

Which, assuming factorization, is like

$$A_{LL} \approx \underbrace{a_{gg}} \Delta g^2 + \underbrace{b_{gq}} \Delta g \Delta q + \underbrace{c_{qq}} \Delta q^2$$
 process and kinematic dependent



 And in terms of observables (particle yields N, polarizations P, relative luminosity R), reduces to

$$A_{LL} = \frac{1}{P_B P_V} \frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}}, R = \frac{L^{++}}{L^{+-}}$$





### Longitudinally Polarized p+p Runs @ PHENIX

| Run (End Year) | √s (GEV) | L recorded<br>(pb <sup>-1</sup> ) | Polarization | FOM (P <sup>4</sup> *L) |
|----------------|----------|-----------------------------------|--------------|-------------------------|
| Run 03         | 200      | 0.35                              | 27%          | 0.0019                  |
| Run 04         | 200      | 0.12                              | 40%          | 0.0031                  |
| Run 05         | 200      | 3.4                               | 49%          | 0.2                     |
| Run 06         | 200      | 7.5                               | 57%          | 0.79                    |
| Run 06         | 62.4     | 0.08                              | 48%          | 0.0042                  |
| Run 09         | 200      | 16                                | 57%          | 1.5                     |
| Run 09         | 500      | 14                                | 39%          | 0.21                    |


In Run ending 2011, will significantly increase 500 GeV data set. Current proposal calls for 50 pb<sup>-1</sup> in 2011 (With the main goal being W-physics) If reasonable polarization is achieved, will extend x reach of A<sub>LL</sub>

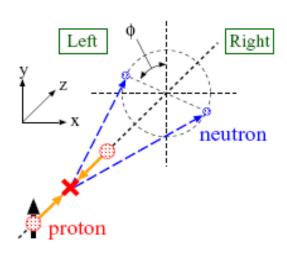




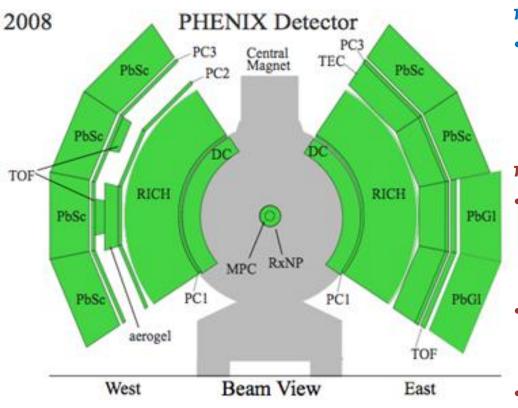
# Relative Luminosity and Polarization

#### **Beam-Beam Counters (BBCs)**




- •Two arrays of 64 elements, each a quartz Cherenkov radiator with PMT
- • $\Delta \eta = \pm (3.1 \text{ to } 3.9), \Delta \varphi = 2\pi$
- •Used for relative luminosity measurement:

$$R = \frac{L^{++}}{L^{+-}} \approx \frac{N_{BBC}^{++}}{N_{BBC}^{+-}}$$


•Also, currently used to determine collision vertex

# Local Polarimetry with the Zero Degree Calorimeters (ZDCs)

- ZDCs are hadron calorimeters
- •They cover  $\Delta \eta = \pm (6 \text{ to } \infty)$ ,  $\Delta \varphi = 2\pi$
- •Large *transverse* single spin asymmetry has been measured in neutrons at very forward η
  - •Use this: Smaller Left-Right or Up-Down asymmetry in ZDC = more long. polarized
- •ZDC can also be used as cross-check for relative luminosity



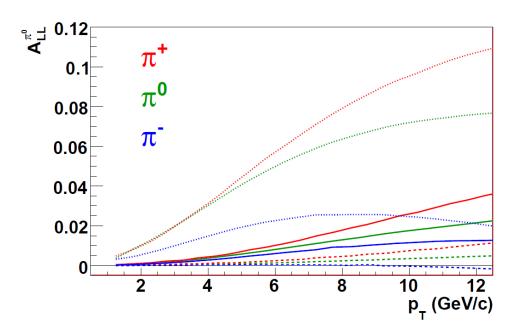
### PHENIX Central Arm

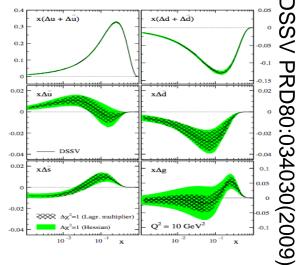


•  $|\eta| < 0.375$ ,  $\Delta \Phi = (\pi/2) \times 2$ 

#### $\pi^0$ , direct photon

- Electromagnetic Calorimeter (EMCal)
  - Lead Scintillator (PbSc) sampling calorimeter and Lead Glass (PbGl) Cherenkov radiator
  - Good timing, energy, and spatial resolution


#### $\pi^{\pm}$


- Ring Imaging Cherenkov Radiator (RICH)
  - Particle identification
  - Pion threshold 4.7 GeV
- Drift Chamber (DC)
  - First step in charged particle tracking
  - High p<sub>T</sub> resolution
- Pad Chamber (PC)
  - 3 layers of multiwire proportional chambers
  - Additional points for tracking

# A<sub>11</sub>: Charged Pions

#### **Analysis:**

- Select  $\pi$ ± (and background e±) with the RICH
  - 4.7 GeV/c turn-on
- Remove non-conversion e± with e/p and other cuts
- Conversion electrons removed by comparing vertex with DC track, PC, EMCAL

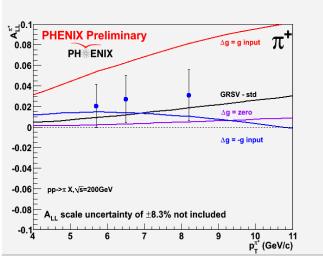


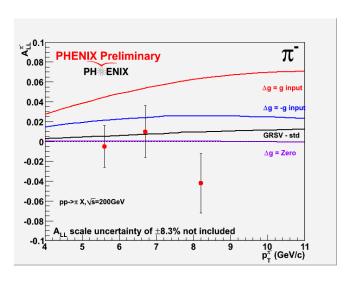


- Preferential fragmentation of
  - u quarks into π<sup>+</sup>
  - d quarks into  $\pi^-$
- $A_{LL}$ s for  $\pi^-$ ,  $\pi^0$ ,  $\pi^-$  should be ordered depending on  $sgn(\Delta G)$ 
  - Could be complicated by node in Δg

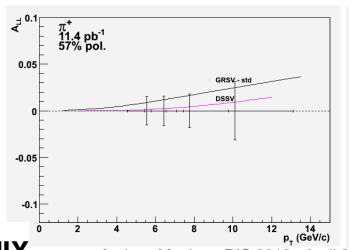
$$A_{LL}^{\pi^+} > A_{LL}^{\pi^0} > A_{LL}^{\pi^-} \Rightarrow \Delta G > 0$$

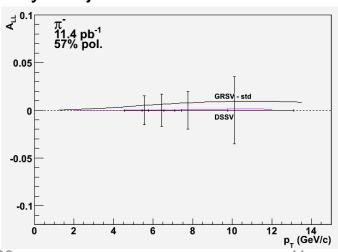
$$A_{LL}^{\pi^+} < A_{LL}^{\pi^0} < A_{LL}^{\pi^-} \Rightarrow \Delta G < 0$$




# A<sub>11</sub>: Charged Pions


#### Run 06 Results:


- Run 06 Results
- Run 09 data analysis ongoing
  - Figure of
     Merit, P<sup>4</sup>L,
     was 0.79 pb<sup>-1</sup>
     for Run 06
  - vs. 1.5 pb<sup>-1</sup> for
     Run 09

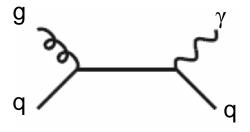


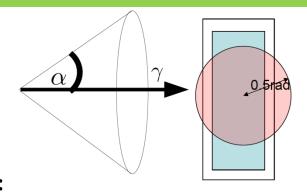


#### Run 09 Uncertainty Projection:








Andrew Manion - DIS 2010 - April 20

# A<sub>11</sub>: Direct Photon

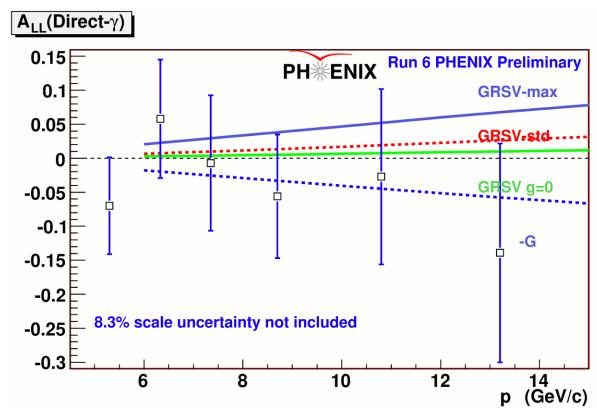
- Quark-gluon Compton scattering dominates
  - Linear in ΔG
  - Theoretically clean
- → A "Golden Channel"





#### **Analysis:**

- Isolation cut for direct photon candidates
- Large decay photon BG
   →Cut partners with π<sup>0</sup> mass
- Miss some:
  - →Estimate from number cut with Monte Carlo


$$r = N^{BG}/N^{iso}$$

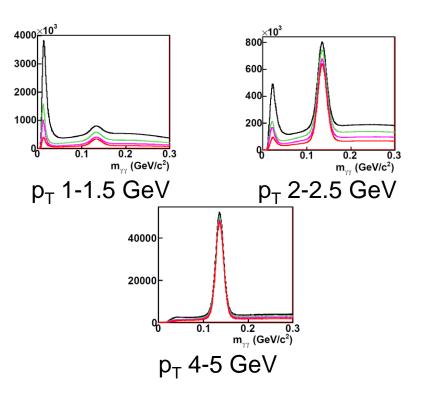
| Bin p <sub>T</sub> | r    |
|--------------------|------|
| 5-6                | 0.68 |
| 6-7                | 0.58 |
| 7-8                | 0.46 |
| 8-10               | 0.34 |

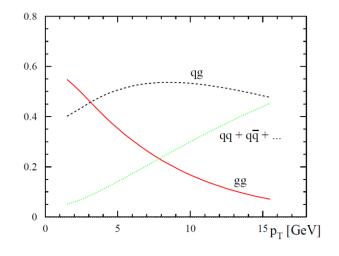




# A<sub>11</sub>: Direct Photon




- First measurement
- Run 09 data analysis ongoing





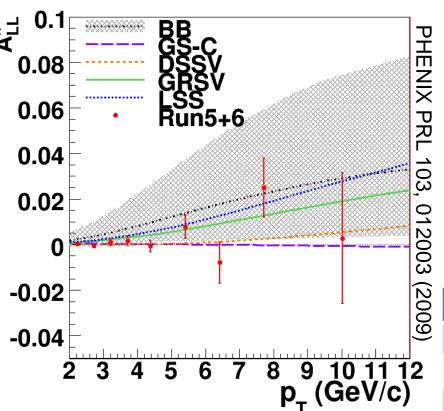

## A<sub>11</sub>: Neutral Pion

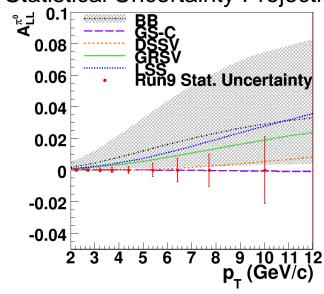
- High statistics measurement
- Gluon-gluon dominated, significantly constrains magnitude of  $\Delta G$





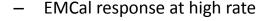
#### **Analysis:**


- Pair all photons in EMCal to reconstruct mass
- Various cuts to remove hadrons and noise
- Remaining combinatorial and other BG contribution estimated using sidebands






## A<sub>II</sub>: Neutral Pion @ 200 GeV


200 GeV Run 05 + 06 results and Run 09 Statistical Uncertainty Projection



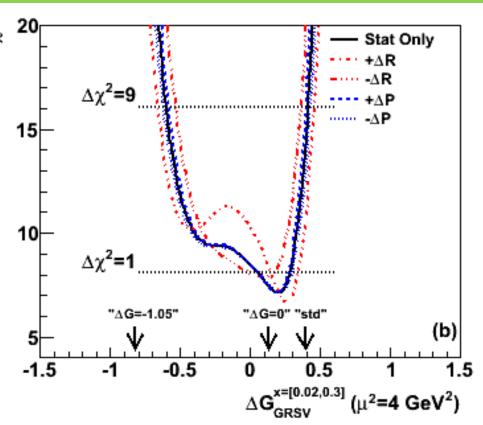


|          |                                                 | •                                         |                         |
|----------|-------------------------------------------------|-------------------------------------------|-------------------------|
| Run (Yr) | ( <p<sub>B&gt;,<p<sub>Y&gt;)(%)</p<sub></p<sub> | L <sub>analyzed</sub> (pb <sup>-1</sup> ) | FOM (P <sup>4</sup> *L) |
| '05      | (50,49)                                         | 2.5                                       | 0.15                    |
| '06      | (56,57)                                         | 6.5                                       | 0.66                    |
| '09      | ~(57,57)                                        | ~14                                       | ~1.5                    |

- Runs 05, 06 and 09 results can be combined
- Systematics important in Run 09 and beyond:
- Double collisions effect Lumi counting, z-vertex determination with the BBC








### Constraining ∆G

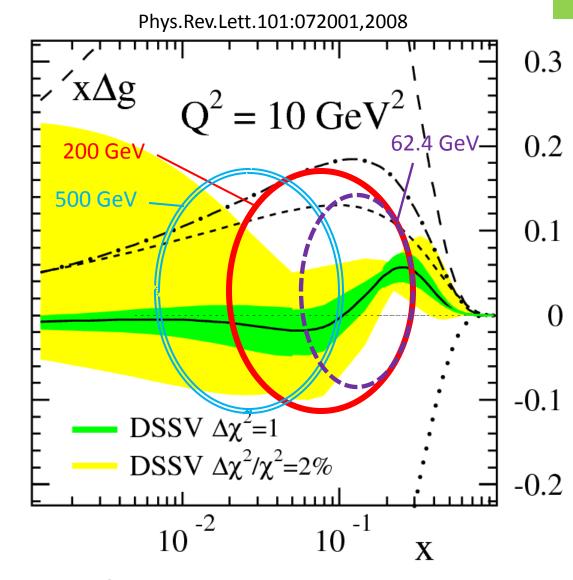
• From the  $\pi^0$  result

For statistical and systematic uncertainties,

- Run 05 + Run 06 π<sup>0</sup> A<sub>LL</sub> data compared with
- GRSV fit to DIS data with various  $\Delta G$  as input
  - -> Generate χ² plot
- Theoretical uncertainties:
  - Shape of Δg (parameterization)
  - Energy scales (factorization, fragmentation, renormalization)



#### Significant constraint on $\Delta G$


$$\Delta G_{\text{GRSV}}^{[0.02,0.3]} = 0.2 \pm 0.1(\text{stat}) \pm 0.1(\text{sys})$$
  
 $^{+0.0}_{-0.4}(\text{shape}) \pm 0.1(\text{scale})$ 





### DSSV global fit

- NLO global analysis
- By de Florian, Sassot,
   Stratmann, and Vogelsang
- Uses DIS, SDIS, PHENIX and STAR data
- Run9:
  - 200 GeV impact
     significantly higher than
     Run6
  - 500 GeV will push the constraint to lower x
- 62.4 GeV gives better statistics for higher x







#### Conclusion

- Multiple Channels to measure ΔG with double longitudinal spin asymmetries
  - $-\pi^0 A_{LL}$  significantly constrains  $\Delta G$
  - 500 GeV data will extend reach
  - Other channels will benefit from increased statistics (i.e. Run 09 analyses underway)
- PHENIX data is already being used in global analysis (DSSV)





### Backup





# More A<sub>LL</sub>s

- Other Channels:
  - Jet components (q+q, q+g, g+g):
    - $\eta$  (similar to ,  $h^{\pm}$ , jet, (also  $\pi^{\pm}$ ,  $\pi^{0}$ )
  - Direct Photon (q+g)
  - Heavy particle (g+g)
    - Open charm to e, μ
    - Open bottom: J/ψ to e+e, μ+μ



